CMV CONFERENCE, SALT LAKE CITY OCTOBER 2023

Hearing and Vestibular Monitoring Protocol for Infants and Children with Congenital Cytomegalovirus

Karen Hendrick, AuD Elissa Jodon, AuD

About Us

Karen Hendrick, AuD

- Vestibular Clinical Practice Specialist
- AuD from University of Washington in 2015

Elissa Jodon, AuD

- Vestibular team member
- AuD from University of Texas at Austin in 2016

Financial Disclosures: Employed by Children's Hospital Colorado.

CHCO Vestibular Program

Number of Vestibular Evaluations

- 2017 = 7
- 2018 = 44
- 2019 = 53
- 2020 = 83
- 2021 = 186 (Rotary Chair installed in January)
- 2022 = 170
- 2023 = 179 (year to date)

TOTAL = 722

Vestibular Appointment Types

Comprehensive Evaluation

- Children \geq 7 years
- VEMP, vHIT, VNG, Rotational Chair, Caloric

Limited Evaluation

- Infants and children 12 months 6 years
- VEMP, vHIT, Rotational Chair

Balance Clinic

• Otolaryngology, Audiology, Physical Therapy, Neurology

Vestibular Screen in Colorado Springs

- VEMP, vHIT, Bedside screens
- Combined with a PT evaluation

Vestibular Evoked Myogenic Potential (VEMP) Testing

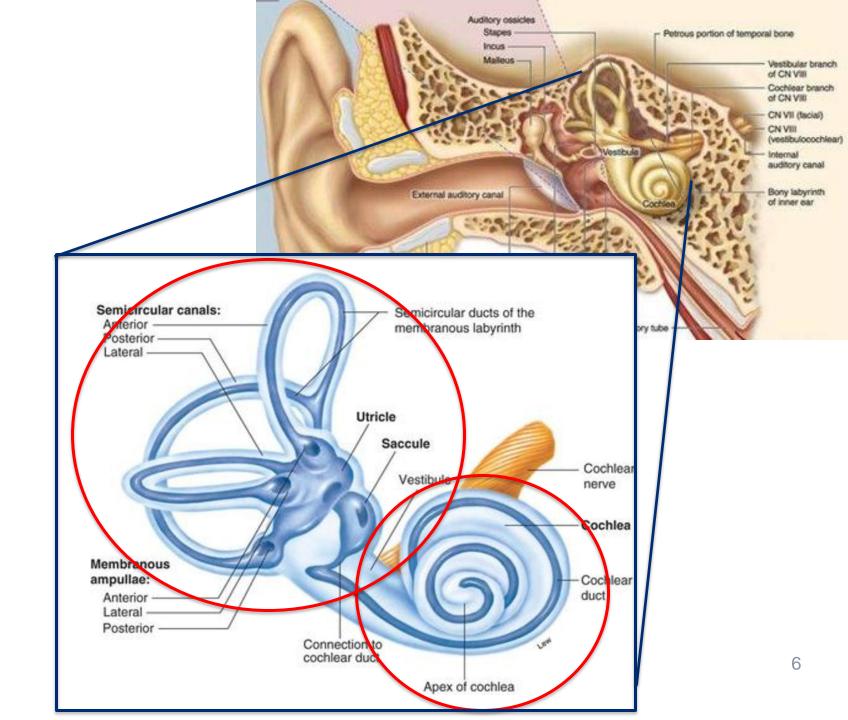
- Pre-op Cochlear Implant surgery
- cCMV 12-month vestibular screening

Learning Objectives

1 Paring loss

Hearing loss and vestibular dysfunction risks with cCMV CHCO hearing and vestibular monitoring guidelines Vestibular test modifications for all ages and developmental levels Vestibular screens at different ages

Anatomy


Hearing:

• Cochlea

Vestibular:

- Utricle
- Saccule
- 3 Semicircular canals

All inner ear structures are connected through a continuous labyrinth

Hearing Loss and Congenital Cytomegalovirus (cCMV)

- It is well established that cCMV can cause sensorineural hearing loss. (Dollard et al., 2007; Goderis et al., 2014; Cannon et al., 2014)
- There are national recommendations to closely monitor hearing in children with cCMV.
 - Joint Committee on Infant Hearing (JCIH) Position Statement, 2019: recommends diagnostic follow-up at 3 months of age and annually until age 3
 - <u>American Academy of Audiology (AAA) Position Statement, 2023</u>: recommends diagnostic evaluations every 3-6 months for the first year of life, every 6 months until 3 years of age, annually until 6 years of age

CHCO Hearing Monitoring Guideline for cCMV

- Diagnostic auditory evoked potential (AEP) evaluation at birth/diagnosis of cCMV
- Monitor hearing:
 - every 3 months until 1 year of age
 - every 6 months until 3 years of age
 - annually until 6 years of age

More frequent evaluations may be recommended if results are abnormal or incomplete, or per audiologist recommendation.

Vestibular Function and cCMV

Shears et al., 2022 published a systematic literature review of vestibular function in children with cCMV

- 12 studies performed vestibular tests on children with cCMV.
- Found 10/12 studies showed at least 40% or more of children with cCMV had vestibular loss.
 - Included was Bernard et al., 2015, who found 92% had vestibular loss.
- Vestibular dysfunction was more common in children with symptomatic cCMV, although still occurs in children with asymptomatic cCMV
- 2 studies showed a progression of vestibular dysfunction over time through serial testing

Considerations when developing our protocol:

- Vestibular dysfunction is common in children with cCMV.
- Vestibular dysfunction can occur with cCMV regardless of hearing status.
- Vestibular dysfunction can be progressive in children with cCMV.

CHCO Vestibular Monitoring Guideline for cCMV

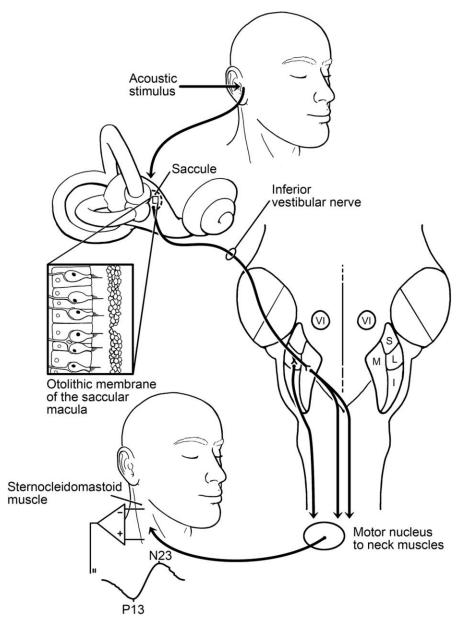
- 12 months of age: Cervical vestibular evoked myogenic potential (cVEMP)
- 3 years of age: Limited vestibular evaluation
 - VEMP, vHIT, Rotary chair
- 7 years of age: Comprehensive vestibular evaluation
 - VEMP, vHIT, Rotary chair, VNG (oculomotor, positionals, calorics)

Additional or repeat testing may be recommended if there are other abnormal findings.

Why is Monitoring the Vestibular System Important?

Bilateral vestibular hypofunction:

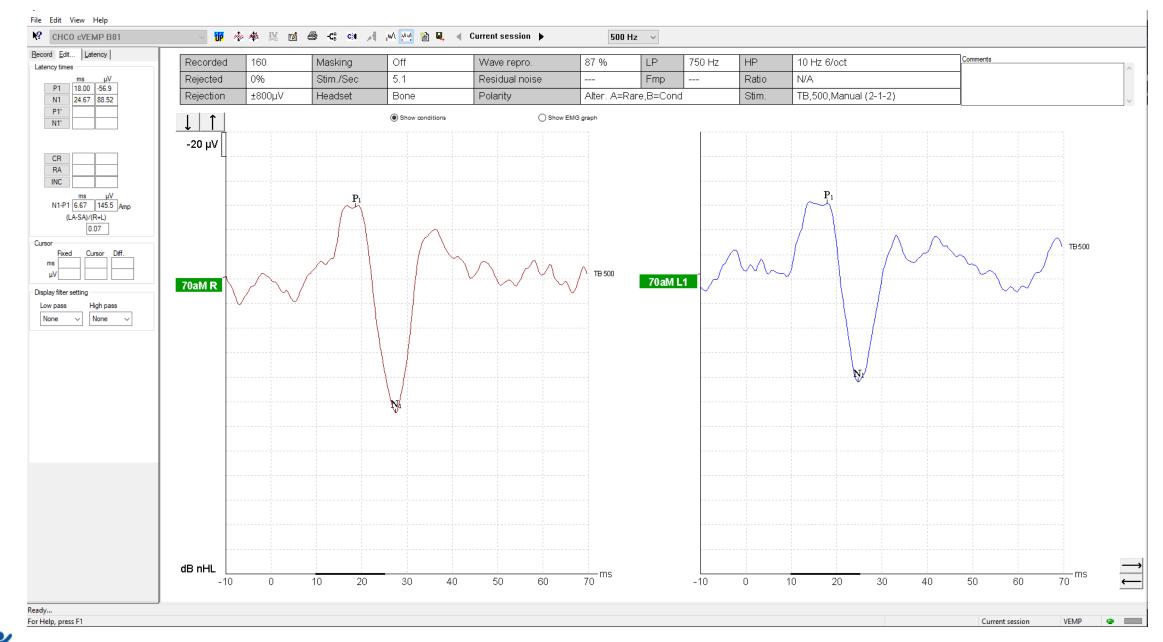
- Gross motor delays and imbalance
- Increases risk of cochlear implant internal device failure by 8 times (Wolter et al., 2015)
- Associated with deficits in memory, executive function, behavior, and school performance (Bigelow & Agrawal, 2015; Franco, 2008)


How can we reduce these problems?

• Early identification of hypofunction and participation in vestibular rehabilitation improves balance outcomes (Rine, 2018)

Cervical Vestibular Evoked Myogenic Potential

cVEMP: Saccule and Inferior Vestibular Nerve


- Saccule: senses vertical movement
- Utricle: senses horizontal movement (oVEMP)
- Can be completed on infants
- Short and non-invasive
- Ear-specific
- Not affected by sensorineural hearing loss
- Air or bone conduction stimulus
- Contraction of the Sternocleidomastoid (SCM)
- Electrodes measure the response sent from the saccule along the vestibulospinal tract

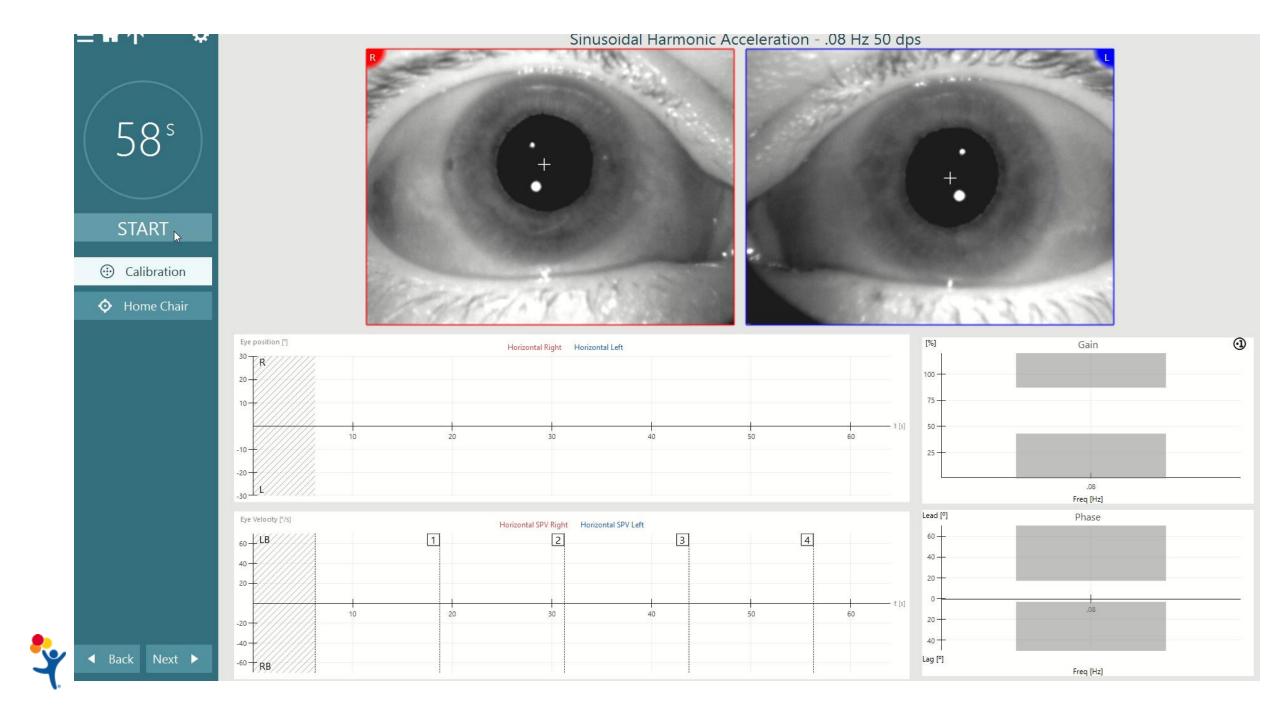
cVEMP Testing: 12-month-old

cVEMP: Alternative Testing Position

Abnormal cVEMP Follow Up

- Asymmetric cVEMPs at 12 months: Repeat in 3 months.
- Absent cVEMP bilaterally at 12 months: Rotational chair testing to assess for bilateral hypofunction.
- Vestibular physical therapy evaluation if there is bilateral hypofunction.

Rotational Chair Testing


Sinusoidal Harmonic Acceleration (SHA) Test

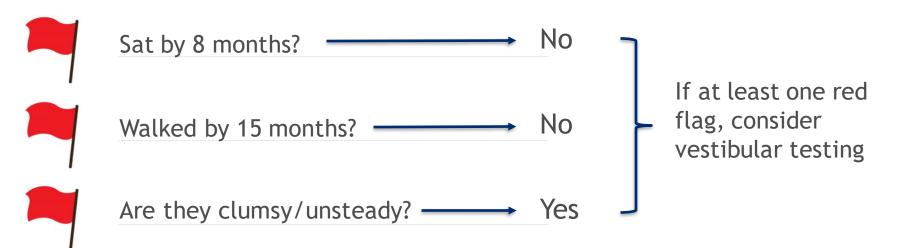
- Shows how the vestibular system senses different speeds of chair rotation.
- Continuous rotation of the chair to the right and left at multiple test frequencies in a blacked-out enclosure.
- Measure nystagmus eye movement that occurs when there is a functioning vestibular system in response to the chair movement.
 - If there is bilateral hypofunction, there will be no nystagmus.

Nystagmus is measured by video goggles, electrodes, or infrared observation camera.

Pediatric Setup for Rotary Chair

Electrode setup in parent's lap or car seat

Pediatric Observation Camera


19

Screening for Possible Vestibular Dysfunction

- Pediatric vestibular centers are limited, and some states do not have this testing for younger ages at all.
- Due to the high prevalence of vestibular dysfunction in children with cCMV and/or sensorineural hearing loss, gross motor delays may be an indicator of vestibular involvement.
- If your patient/child has gross motor delays, vestibular rehabilitation physical therapy should be added and if possible, vestibular testing should be pursued.

Predictive Factors for Vestibular Dysfunction in Children with Permanent Hearing Loss

Children with sensorineural hearing loss, especially moderately-severe or greater, and who have at least one "red flag," should consider a vestibular evaluation.

?

Janky, K., et al., 2018

Reflex & Gross Motor Screening

Patient Age	Screening
9+ months	Parachute Reflex
2y – 2y 11m	Stand on two feet with eyes closed for 5 seconds
3y – 3y 11m	Stand tandem feet with eyes closed for 5 seconds
4y – 6y 11m	Stand on one foot with eyes closed for 8 seconds
7+ years	Modified Clinical Test of Sensory Interaction on Balance (mCTSIB)

Parachute Reflex

- Begins to develop around 6 months of age and matures by 12 months of age. Most infants demonstrate by 9 months. (Romeo, D.M. et al., 2009)
- Infant should put their arms outward if they are suddenly moved towards the ground.
- Lack of arm extension may suggest a delay in reflexes/gross motor development.

Gross Motor Screening

2y - 2y 11m Two feet for 5 seconds With eyes closed 3y -3y 11m Tandem feet for 5 seconds With eyes closed 4y - 6y 11m One foot for 8 seconds With eyes closed

Modified Clinical Test of Sensory Integration on Balance (mCTSIB)

Floor Eyes open

Floor Eyes closed

Pad Eyes open

Pad Eyes closed

Grading: No sway, Some sway, Fall

Vestibular Rehabilitation

Physical Therapy Treatment Strategies: patient specific treatment programs that are goal oriented and based on dysfunction, activity and participation restrictions.

- <u>Habituation</u>: repeated exposure to dizzy provoking stimulus to help habituate the nervous system
- <u>Adaptation:</u> the vestibular system changes to adapt to the neural stimulus (head and/or body movement)
- <u>Compensation/substitution:</u> alternative strategies for lost or ineffective system
- <u>Canal re-positional technique (CRT)</u>: e.g., Epley maneuver
- Balance Training
- Oculomotor Exercises

Final Takeaways

- Infants/children with cCMV are at high risk for progressive hearing AND vestibular loss.
- Bilateral vestibular hypofunction can lead to problems with balance, cognition, academics and social skills.
- Vestibular testing can be done on infants, young children or children with developmental delays.
- Vestibular Physical Therapy helps reduce the negative consequences of vestibular hypofunction and helps the child meet academic and recreational goals.
- Developmental and gross motor screens can help identify infants/children with cCMV who are likely to have vestibular problems, and they can begin PT without formal vestibular testing.

References

- Bigelow RT, Agrawal Y. Vestibular involvement in cognition: Visuospatial ability, attention, executive function, and memory. J Vestib Res. 2015;25(2):73-89. doi: 10.3233/VES-150544. PMID: 26410672.
- Britt WJ. Cytomegalovirus. In: Remington JS, Klein JO, Wilson CB, Nizet V, Maldonado Y, editors. Infectious diseases of the fetus and newborn infant. Philadelphia: Elsevier Saunders; 2011. pp. 706-55.
- Cannon, M. J., Griffiths, P. D., Aston, V. and Rawlinson, W. D. (2014), Universal newborn screening for congenital CMV infection: what is the evidence of potential benefit?, *Rev. Med. Virol.*, 24: 291-307. DOI: <u>10.1002/rmv.1790</u>
- Centers for Disease Control and Prevention. (2020, August 18). *Cytomegalovirus (CMV) and congenital CMV infection*. Centers for Disease Control and Prevention. https://www.cdc.gov/cmv/index.html
- Cushing SL, Gordon KA, Rutka JA, James AL, Papsin BC. Vestibular end-organ dysfunction in children with sensorineural hearing loss and cochlear implants: an expanded cohort and etiologic assessment. Otol Neurotol. 2013 Apr;34(3):422-8. doi: 10.1097/MAO.0b013e31827b4ba0. PMID: 23370550.
- Dhondt C, Maes L, Rombaut L, Martens S, Vanaudenaerde S, Van Hoecke H, De Leenheer E, Dhooge I. Vestibular Function in Children With a Congenital Cytomegalovirus Infection: 3 Years of Follow-Up. Ear Hear. 2021 Jan/Feb;42(1):76-86. doi: 10.1097/AUD.0000000000000904. PMID: 32590628.
- Dollard, S.C., Grosse, S.D. and Ross, D.S. (2007), New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev. Med. Virol., 17: 355-363. <u>https://doi.org/10.1002/rmv.544</u>
- Fife TD, Colebatch JG, Kerber KA, Brantberg K, Strupp M, Lee H, Walker MF, Ashman E, Fletcher J, Callaghan B, Gloss DS 2nd. Practice guideline: Cervical and ocular vestibular evoked myogenic potential testing: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2017 Nov 28;89(22):2288-2296. doi: 10.1212/WNL.000000000004690. Epub 2017 Nov 1. PMID: 29093067; PMCID: PMC5705249.
- Franco ES, Panhoca I. Vestibular function in children underperforming at school. Braz J Otorhinolaryngol 2008;74(6):815-25.
- Goderis, J., De Leenheer, e., Smets, K., Van Hoecke, H., Keymeulen, A., Dhooge, I.; Hearing Loss and Congenital CMV Infection: A Systematic Review. *Pediatrics* November 2014; 134 (5): 972-982. 10.1542/peds.2014-1173

References (continued)

- Janky KL, Thomas MLA, High RR, Schmid KK, Ogun OA. Predictive Factors for Vestibular Loss in Children With Hearing Loss. Am J Audiol. 2018 Mar 8;27(1):137-146. doi: 10.1044/2017_AJA-17-0058. PMID: 29482202; PMCID: PMC6105082.
- Licameli G, Zhou G, Kenna MA. Disturbance of vestibular function attributable to cochlear implantation in children. Laryngoscope. 2009 Apr;119(4):740-5. doi: 10.1002/lary.20121. PMID: 19205016.
- Rine RM. Vestibular Rehabilitation for Children. Semin Hear. 2018 Aug;39(3):334-344. doi: 10.1055/s-0038-1666822. Epub 2018 Jul 20.
 PMID: 30038459; PMCID: PMC6054578.
- Romeo DM, Cioni M, Scoto M, Palermo F, Pizzardi A, Sorge A, Romeo MG. Development of the forward parachute reaction and the age of walking in near term infants: a longitudinal observational study. BMC Pediatr. 2009 Feb 16;9:13. doi: 10.1186/1471-2431-9-13. PMID: 19220886; PMCID: PMC2653025.
- Shears A, Yan G, Mortimer H, Cross E, Sapuan S, Kadambari S, Luck S, Heath PT, Walter S, Fidler KJ. Vestibular and balance dysfunction in children with congenital CMV: a systematic review. Arch Dis Child Fetal Neonatal Ed. 2022 May 11;107(6):630-6. doi: 10.1136/archdischild-2021-323380. Epub ahead of print. PMID: 35545420; PMCID: PMC9606507.
- Wolter NE, Gordon KA, Papsin BC, Cushing SL. Vestibular and Balance Impairment Contributes to Cochlear Implant Failure in Children. Otol Neurotol. 2015 Jul;36(6):1029-34. doi: 10.1097/MAO.0000000000000751. PMID: 25853610.
- Year 2019 Position Statement: Principles and Guidelines for Early Hearing Detection and Intervention Programs. *Journal of Early Hearing Detection and Intervention*. 2019. 4(2), 1-44. DOI: <u>https://doi.org/10.15142/fptk-b748</u>

Questions?

Vestibular@ChildrensColorado.org

30