

VESTIBULAR AND BALANCE FUNCTION IN CHILDREN WITH CONGENITAL CMV

Anwar Almutairi, MS, PT The University of Alabama at Birmingham PhD in Rehabilitation Science Program

ACKNOWLEDGEMENTS

FUNDING SOURCE & DISCLOSURES

- This work was funded by a research grant from the <u>Children's of Alabama</u> <u>Kaul Pediatric Research Institute (KPRI)</u> awarded to Drs. Boppana and Christy
- Other than this, none of the authors have a relevant financial or non-financial relationship other than Karen Fowler who receives a consulting fee from Merck and support from NIH.

Alabama

VESTIBULAR SYSTEM FUNCTION

VESTIBULAR HYPOFUNCTION LEADS TO...

Progressive Gross Motor Delays (Rine 2004)

 Aberrant use of vision and somatosensory information for postural control (Rine 2006)

 Inability to see clearly when the head is moving (Rine 2004, 2014)

EVIDENCE FOR VESTIBULAR DYSFUNCTION IN CHILDEN WITH CMV

- Review of temporal bone pathology in 9 infants with cCMV who died between 3 weeks and 5 months of age showed evidence of endolabyrinthitis in 5/9 infants (Stagno 1977)
- A histopathologic study of inner ears from fetuses infected with CMV showed frequent involvement of vestibular system with extensive infection of the non-sensory epithelia including the specialized dark cells (Gabrielli, 2013).

EVIDENCE: VESTIBULAR DYSFUNCTION IN CONGENITAL CMV

- In children with symptomatic cCMV who underwent cochlear implantation, balance disturbances and motor delay was found in most (88%) and only one child who underwent testing had normal function (Karltorp 2014)
- Retrospective review of clinic patients in France: 92.3% of children with cCMV and hearing loss had vestibular disorders which were progressive in 50% (Bernard 2015)
 - Not related to side of hearing loss (i.e. some of the hearing ears were also damaged)
 - Not all parts of the vestibular system were damaged indicating a need for comprehensive testing
 - Comprehensive standardized balance testing was not done
- Our hypothesis was that children with asymptomatic cCMV might also exhibit vestibular dysfunction that affects their balance and gaze stability

HOW MIGHT A CHILD WITH VESTIBULAR DYSFUNCTION PRESENT?

- Late walking, after 15 months
- Inability to navigate compliant surfaces (e.g. sand at the beach, thick carpet, uneven surfaces at the park)
- Gravitational insecurity
 - Poor perception of where they are in space
 - Uneasy with movement (e.g. swings, climbing up a slide ladder)
- Clumsy, falling a lot
- Older kids: Difficulty with high level gross motor skills such as walking on a balance beam, playing eye-hand coordination sports.
- Difficulty reading well
- Poor perception of upright (tilted head or body)

COULD CHILDREN WITH NON-SYMPTOMATIC CMV HAVE VESTIBULAR DYSFUNCTION?

- N=40 children with cCMV, aged 5 to 10 years (mean age= 7.5)
- 20 MALES/ 20 FEMALES
- Recruited from database of children with CMV from the CHIMES study at UAB.
- Only 1 with evidence of hearing loss
- All asymptomatic otherwise
- No evidence of cognitive delay or other neurologic deficits
- None of the children had undergone vestibular function testing or physical therapy evaluation.

ROTARY CHAIR TESTING OF THE VOR

- <u>Vestibulo-Ocular Reflex (VOR)</u>: Sinusoidal Harmonic Acceleration (SHA) at slow and fast frequencies; Step rotation at 100 deg/sec
- <u>Vestibulo-Visual Interaction</u>: Subjective visual vertical and horizontal (SVV). VOR cancellation and visual enhancement

SLOWER SINUSOID (0.04 HZ)

Sinusoidal Harmonic Acceleration (0.02 Hz) 11/30 abnormal (36.67%)

STEP TEST @ 100 DEG/SEC

Vestibular Time Constant (100 deg/sec) 10/38 were abnormal (26%)

Subjective Visual Vertical (SVV)

SUBJECTIVE VISUAL VERTICAL VARIANCE 16/35 had abnormal SVV (45.7%)

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

Methods: Cervical Vestibular Evoked Myogenic Potential (C-VEMP)

- A neurophysiological assessment technique used to determine the function of the otolith organs (i.e. saccule) of the inner ear.
- The participant's SCM muscle was recorded using EMG while pure tone bursts via an earphone to the ear ipsilateral to the SCM being activated.

C-VEMP CORRECTED ASYMMETRY RATIO: 15/32 WERE ABNORMAL (47%)

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

%

Methods: Sensory Organization Test (SOT)

- SMART EquiTest (Natus Medical, Inc). The participants were tested on 6 conditions.
- Effectiveness ratios were calculated & compared to published norms^{*}
 - Visual ratio: condition 4/1
 - Somatosensory ratio: condition 2/1
 - Vestibular ratio: condition 5/1

Sensory Organization Test

POSTURAL CONTROL: VISUAL RATIO

VISUAL RATIO: CUT-OFF IS <0.76; 92.3% ABNORMAL. 7 PARTICIPANTS STEPPED

VISUAL RATIO

SOMATOSENSORY RATIO: CUT-OFF IS <0.98

SOMATOSENSORY RATIO. CUT-OFF <0.98. 64% WERE ABNORMAL

VESTIBULAR RATIO. CUT-OFF IS < 0.20

VESTIBULAR RATIO: 38.5% ABNORMAL. 25 STEPPED OR FELL

Clinical Dynamic Visual Acuity test (DVA)

- Tests the ability to use the vestibuloocular reflex (VOR) in a functional way.
- The difference in optotypes viewed during static visual acuity and visual acuity during 2 Hz passive head movement in yaw plane was measured.

26-]	****
84				81
#A	0000	00000	00000	
=	00000	00000		26.000
2A	00000	0000	00000	24.000
A 4	00000	00000	0000	84 ***
==	00000	00000	00000	\$1.000
24	00000	00000	00000	24.000
7Å	00003 03400	00000	00000	1100 7400

CLINICAL DYNAMIC VISUAL ACUITY 18/39 Abnormal (46%)

BRUININKS-OSERETSKY TEST OF MOTOR PROFICIENCY

- Standardized test for children ages 4-21 years
- Balance subscale (10 items):
 - Standing with feet apart on line with eyes opened and closed
 - Walking forward on a line
 - Standing on 1 leg on a line with eyes opened and closed
 - Walking tandem on a line
 - Standing on 1 leg on a balance beam with eyes opened and closed
 - Standing tandem on a balance beam with eyes opened and closed

BOT-2 Balance Subscale Standard Scores N= 16/38 (42%) scored below or well below average

CONCLUSIONS AND CLINICAL IMPLICATIONS

- Although children with cCMV may be asymptomatic, they should be monitored for vestibular related impairments
- It is recommended that children with cCMV receive vestibular function testing and referred for a physical therapy evaluation when the child has:
 - Delay of walking > 15 months of age
 - Clumsiness or frequent falling
 - Complaints of blurry vision, not explained by visual acuity
 - Balance problems, especially when in the dark and/or on compliant surfaces
 - Poor tolerance of movement (e.g. motion sensitivity)
 - CMV related sensorineural hearing loss

VESTIBULAR REHABILITATION: BALANCE TRAINING

VOR TRAINING: READING WHILE BOUNCING

VOR TRAINING: IDENTIFY PICTURES WHILE JUMPING

NET SWING TO GET HEAD MOVEMENT

VOR TRAINING: TURN THE HEAD AS THE CHILD READS WORDS USING POWERPOINT

Discounted Registration Rate for Parents

- cCMV Focused Program April 7 9, 2019
- National CMV Foundation Presentation during Opening Session on Sunday April 7, 2019

CMV2019 Birmingham, Alabama 07–11 April 2019

7th International Congenital CMV Conference & 17th International CMV Workshop

Important Dates

Monday, 01 October 2018: Registration and Abstract Submission Sites OpenFriday, 30 November 2018: Early Registration & Abstract Submission DeadlineFriday, 11 January 2019:Abstract Disposition Notices SentFriday, 22 February 2019:Standard Registration & Cancellation DeadlineSunday, 07 April 2019:See you in Birmingham!

www.CMV2019.org | CMV@ConferenceSolutionsInc.com

